
1

2

3

Abstract

Over the past decade, technology has grown at a rapid rate in many sectors of
business. Daily activities such a banking, shopping and business transactions have
become computerised, enabling secure transfer of information across the internet.

The education sector can be described as a business; an ever changing corporation
requiring continual documentation and updating of information. As this business grows,
so do the demands on the administration systems that form its backbone. An overload
of paperwork and an increase in the numbers of admin staff required to combat such
problems are two perfect reasons for the incorporation of an automated examination
system for educational environments. Time, money and effort could be saved if
students were able to sit exams in a computerised environment. Many businesses that
are not strictly educational, yet offer some form of examination procedures have
adopted this new way of working. The DVLA Driver Theory test for example is now
completely computerised, and has been working successfully now for several years.

This thesis outlines the work carried out to produce a complete online examination
system for use in a University environment. The finished product, IEP, is a secure, user
friendly system that enables lecturers and students alike to participate in and monitor
examination progress, minus the usual paperwork

4

Table of Contents

Abstract .. 3
Table of Contents ... 4
Table of Figures.. 7
1. Introduction ... 8

1.1 Tasks Involved... 8
1.1.1 Research.. 8
1.1.2 Design ... 8
1.1.3 Implementation .. 8
1.1.4 Testing .. 9

2 Background..10
2.1 Application Research..10

2.1.1 Blackboard ..10
2.1.2 Richard Healy Test Builder ...10
2.1.3 Other Professional Systems..10
2.1.3.1 ExamWeb..10

2.2 Security ...11
2.2.1 SSH (Secure Shell) ...11
2.2.2 IP Monitoring ...11
2.2.3 On the day Passwords...11
2.2.4 Internet Access ..11
2.2.5 HyperText Transfer Protocol Secure ..11
2.2.6 SQL Injection Attack ...12

2.3 Possible Approaches ..12
2.3.1 Available Technology ..12
2.3.2 Web Servers..14
2.3.3 Internet Technologies ...15

2.3.3.1 Web Browsers...15
2.3.2.1 Page Formatting..15

2.3.3 Conclusions of Final Software ...15
2.4 Exam Research - Question Formats..16

Bloom’s Taxonomy ..16
Question Formats ...16

3 Specification...18
3.3 Requirements ...18

3.3.2 Functional Requirements ...18
3.3.2.1 Student Section ..18
3.3.2.2 Lecturer Section ..18
3.3.2.3 Administration Section ...18

3.3.4 Efficiency ..19
3.3.5 Design Constraints ...19

3.4 System Environment..20
3.5 Interface ..21

3.6 Security ...21
SQL Injection ...21
Bombardment ..21
Security Procedures ..21

3.7 Data Transfer ...22
3.8 Project Schedule ...22
3.9 Class Design...22

3.9.4 Exam Package ...22
3.9.5 Marking Package ..23
3.9.6 Tasks Package ...24

5

3.9.7 Security Package..24
3.9.8 Monitoring Package...24
3.9.9 Utilities Package...24

4 Implementation ..25
4.1 Database ...25

4.1.1 Structure ..25
4.1.2 Table Relationships...26
4.1.3 Connection Pooling ...26
4.1.4 Database Class ..26
4.1.5 Database Results..27

4.2 Interface..27
4.2.1 Navigation...27

4.2.1. Lecturer Navigation ..27
4.2.2. Student Navigation ..28

4.2.2 Style ..28
4.2.3 Layout ..28

4.3 Calculator ..28
4.4 Security ...29

4.4.1 Security Realms ...29
4.4.2 HTTPS ..29

Server Certificate..29
Configuration ...30

4.4.3 Security Validation..30
4.5 System Access..30

4.5.1 Index ...30
4.5.2 Login ..30
4.5.3 User JavaBean ...31
4.5.4 Settings Bean ..31

4.6 Student Section ..31
4.6.1 Welcome...31
4.6.2 Start Exam..32
4.6.3 Exams ..32

4.6.3.1 Exam Back End ...32
4.6.1.2 Layout ...33
4.6.1.3 Setup ..35
4.6.1.4 Material ...35
4.6.1.5 Answering ..36
4.6.1.6 Confirmation...36
4.6.1.7 Completion ...36

4.7 Lecturer Section..37
4.7.1 Exams ..37

4.7.1.3 Exam Back End ...37
4.7.1.4 Create Exam...40
4.7.1.5 View Exams..43
4.7.1.6 Edit Exam...44
4.7.1.7 Generate and Print Passwords ...44
4.7.1.8 Monitor Exams ..44
4.7.1.9 Marking Front End ...45

4.7.2 Tasks..47
4.7.3 Settings ..47
4.7.4 IP Ranges..48

4.7.4.1 IP Ranges Back End ...48
4.7.4.2 IP Ranges Front End ..48

5 Results ..49
5.6 Security Testing ..49

6

5.6.1 Accessing Resources ...49
5.6.2 Secure Server..49
5.6.3 SQL Attacks...49
5.6.4 IP Checks..49

5.7 Student Testing ..49
5.7.1 Interface Testing ..50
5.7.2 Exam Class Testing...50

5.8 Other Tests ..51
6. Conclusion and future work ...52

6.1 Achievements ..52
6.2 Problems ...52
6.3 Future Developments ..52
6.4 Summary ..52

References ...53

7

Table of Figures

Figure 1: Communication over HTTPS with IEP..10
Figure 2: Communication between web browser and server13
Figure 3: System Interaction..18
Figure 4: System Structure ..18
Figure 5: Project Schedule ...20
Figure 6: UML diagram for the exam package ...21
Figure 7: Shows a basic UML class diagram for the marking package21
Figure 8: Database Relationships ..24
Figure 9: Lecturer Navigation ...25
Figure 10: Student Navigation ..26
Figure 11: System Layout..26
Figure 12: Calculator Applet ...26
Figure 13: Login Page ...28
Figure 14: System Access Interface...28
Figure 15: Main Page ..29
Figure 16: Exams Page..31
Figure 17: Top Navigation..32
Figure 18: Drop-Down Navigation ...32
Figure 19: Quick Navigation ...32
Figure 20: Information Bar...32
Figure 21: View Material ..33
Figure 22: Exam Confirmation ..34
Figure 23: Completion Page ...35
Figure 24: Stage One ..38
Figure 25: Calendar Facility..38
Figure 26: Stage Two..39
Figure 27: Stage Three..40
Figure 28: Question Details ..40
Figure 29: Exam Overview ...41
Figure 30: Single Exam View..41
Figure 31: Edit Exam ..42
Figure 32: Monitor Exams Overview ..42
Figure 33: Monitor Single Exam ..43
Figure 34: Marking Overview..43
Figure 35: Automatic Marking...44
Figure 35: Manual Marking...44
Figure 36: Marking Overview..44
Figure 37: Tasks Overview...45
Figure 39: Change Settings..45
Figure 40: IP Range Overview ..46
Figure 41: Testing Efficiency Results..51

8

1. Introduction

Examinations can be a traumatic experience and feelings of pressure and angst can
lead to loss of concentration and often time and marks. As education advances, so
should the assessment procedures that are vital to any students’ personal
development. By creating a system that is friendly, comfortable and stress free, the
future of exam procedures will be revolutionised.

This project aims to develop a system that provides a secure, safe environment for
lecturers to create and host dynamic exams. Exams will allow the incorporation of
multiple question formats. Whilst the exam is underway the lecturer will be able to
monitor the progress of the participating students. The student will be given a set time
in which to complete the exam and can monitor his or her progress through the user
friendly interface designed to almost eliminate human error.
Upon completion of the exam, closed ended questions can be automatically marked
thereby reducing lecturer administration time. Open response questions must be
marked manually. Both manual and automatic marks are saved by the system.

The design of the system will enable both computer literate and illiterate students to
sit a secure examination with ease and in comfort. The system will reduce the
considerable paper and consumable consumption associated with traditional exams
and in addition will consequently be more cost effective.
A reduction in the administration time of both lecturers and support staff will be further
complemented by the fact that the system automatically inserts results into an easy to
use database that can be exported to Extensible Markup Language (XML) format.

1.1 Tasks Involved

There are a number of tasks that require implementation of a successful project. Such
tasks are outlined briefly below, and will be considered in more detail in later chapters.

1.1.1 Research

Research is an essential part in creating any successful project. A large part of the
development of this project will require thorough research into all aspects of the
system, with specific reference to exam types, question types and other relevant
issues. I therefore plan to spend a large part researching all aspects of the system. I
will start my research into different types of exams, the main elements required,
different question types, and other issues relevant to exams.

Further research will be required into the available technologies essential for creating a
successful system, from server, programming languages and topologies to algorithms
and design methods. Next investigation into interfaces will be required, the type of
interfaces users find easiest to relate to, the layout and the easiest interaction
methods.

1.1.2 Design
The design stage involves, creating a specification of the whole system, designing the
structure of classes, data flow, communication methods between sections of the
project, how data will be transferred, and thoroughly planning the whole project.

1.1.3 Implementation
The implementation stage, will consists of building the system, keeping to the project
plan and specification to ensure I have implemented every aspect as planned. As with

9

any project, the specification will change throughout the implementation, due to
unforeseen circumstance, but I intend to analyse and thoroughly plan and redesign the
system before continuing.

1.1.4 Testing
Testing will happen throughout development, and on the final product. I plan to test
both front and back ends, improving and redesigning relevant sections as required in
order to build a successful product.

10

2 Background

2.1 Application Research

At the present time, there exists very few online assessment applications. Two of the
more widely used applications are outlined below.

2.1.1 Blackboard

Blackboard is an academic content management system with an examination function
that is used by many Universities and colleges nationwide.

Further investigation of Blackboard highlighted several drawbacks to the application,
mainly with relation to usability and stability;

“Students are likely to have problems if they … double click the submit button … this
may result in error messages which … cause the test not to be saved.” [1].

In addition, the reliability of Blackboard is questionable;

“Quite a few participants have problems with the speed of access … the reason for this
is believed to be the number of students accessing the Blackboard server and
overloading the system.” [2]

In an ideal world an online examination system would allow simultaneous access to
many students and would be proficient enough to prevent failure with heavy usage.

2.1.2 Richard Healy Test Builder

This server based exam program is a simple and effective design for minimal use
unsecured exams.

“It is designed to be an easy to use testing solution. The code is written in ASP using
an Access database to store its data.” [3]

This type of system provides minimal security and hence would be ineffective for use
as a large scale educational assessment tool.

2.1.3 Other Professional Systems

A number of professional examination programs exist at present, but the cost of such
systems run into thousands due to their exceptionally high levels of security and
reliability.

2.1.3.1 ExamWeb

ExamWeb is an example of a professional examination system. A large one off
installation price, and a per use fee makes the system costly and impractical for
educational use.

“A stand-alone subscription sells for $19.95 per semester.” [4]

In light of the afore-mentioned problems, continual user feedback will be obtained
during the design and implementation of the system for this project.

11

2.2 Security

The security aspects pertaining to the development of an online examination system
require some consideration before construction of the system can take place.

2.2.1 SSH (Secure Shell)

"Secure Shell" is a program to log into another computer over a network, to execute
commands in a remote machine, and to move files from one machine to another.” [5]
Such systems could be used bys students to log on to University computers, effectively
fooling the system into thinking they are in University premises.
At present, no advertised procedures to detect such an intrusion exist, however on-
the-day passwords would be an appropriate method of prevention. Passwords would be
assigned from a specific location by approved personnel.

2.2.2 IP Monitoring

In order to ensure that examinations are undertaken in University approved premises,
continual monitoring of approved IP addresses will occur in an aim to prevent illegal
addresses accessing the system.

Unlike SSH, it is possible to detect an intrusion from an invalid IP, and if one is
detected that does not belong to the allocated computer then access is denied.

2.2.3 On the day Passwords

Unique student passwords distributed on the day of the exam is a simple yet secure
method of ensuring that only genuine candidates sit the exam.

2.2.4 Internet Access
The use of a networked computer during an examination poses a problem in that
students have access to internet resources whilst under examination conditions.
One option for avoiding illegal internet access is port monitoring and restricting, but
further investigation suggests that such a method would prove to be a project in itself.
Blocking ports can lead to network problems, including issues with database
connections, network connections and printing services.
An alternative approach to this problem is the use of a shell. A shell is used to build a
user environment and the creation of a custom shell would prevent access to all other
programs bar IEP. Common log in information would be used at each workstation
which would load the shell and prevent access to all other programs.

2.2.5 HyperText Transfer Protocol Secure
HyperText Transfer Protocol (HTTP) is used to transfer data throughout the World Wide
Web (WWW). HyperText Transfer Protocol Secure (HTTPS) is a combination of the
HTTP protocol with a secure layer known as Secure Socket Layer (SSL) which provides
encryption methods to ensure secure internet communication. HTTPS is widely used
throughout industry for secure communication such as payments and transactions.

Appropriate security provided by the protocol relies on accurate implementation by the
administrator and encryption of the server to prevent outside interference with the
service (Figure 1).

12

Figure 1: Communication over HTTPS with IEP

HTTPS allows the transmission of data securely from the server to the browser,
avoiding interception during transit.

2.2.6 SQL Injection Attack

An SQL injection attack is on of the main security risks associated with a web
application. Such an attack can occur when queries are made on the database and
make the system vulnerable.

An attack can happen during any dynamic queries for example:

A simple query that checks an exam exists:
 “select * from exams where Exam=’” + examId + “’”

If the attacker has the option to manipulate the value in examId, they can potentially
alter or change parts of the database. For example, if “1’; drop table exams;” was
inserted in examId, then the attacker would be given free reign of the database. The
IEP system will be designed with this type of attack in mind.

2.3 Possible Approaches

Two possible approaches to building this system exist. The first would be to build a
stand alone system that communicates with a database, and the second would be to
build a web based system. The standalone system will require installation of the
program on every machine, whereas only internet access would be required for a web
based application.

2.3.1 Available Technology

A review of the available technology is paramount in ensuring the most efficient
system is developed. A critical analysis of several approaches therefore follows.

2.3.1.1 Programming Languages
There are a number of different programming languages available for use with both
standalone and web based systems.

o C/C++

The C programming language is widely used,
“C is distinguished for the efficiency of the code it produces, and is the most
commonly used programming language for writing system software.” [6].
Whilst many programmers find the use of the software relatively simple, others
find its complexity daunting.

13

C functions effectively with small efficient systems that do not require human
interaction.

o Java/Java Server Pages
Java is a preferred programming language for many users, because it is object
orientated1. It is based on the C language syntax but personal experience proves
Java to be easier to use. Java deals with memory management and handles user
interaction more effectively than C.
Java Server Pages (JSP) is Java’s version of dynamic web programming. It is
used for server side scripting and is extremely effective for large scale web
applications. JSP is easy to maintain and is fast and efficient.

o Active Server Pages

Active Server Pages (ASP) is Microsoft’s language for creating dynamic server
side scripting that incorporates the use of Visual Basic (VB).

Following investigation into these programming languages it was decided that the use
of a web based application would be most effective in this system. It therefore
remained to be decided whether to use ASP or JSP for the task.

ASP is a scripting language that allows scripts to be run when requested at run time,
but is restricted to the Microsoft platform. Conversely, JSP is based on Java technology
and allows access to the vast range of existing Java API. The page is compiled at
runtime into a servlet or Java class. The benefits of Java can be exploited with JSP.

In conclusion JSP language was chosen for use in this system. As an extension of Java,
complicated classes and objects can be created and in addition JSP supports Tag
Libraries2 and JavaBeans3.

2.3.1.2 Databases

An effective online examination system requires a secure and efficient database for
storage of information. Various commercial databases are available and a brief
overview of the most widely used follows below:

o Microsoft Access

Microsoft Access is a commercial database application that can be used by both
professional programmers and beginners alike. Access is suitable for systems
with limited scalability and it performs poorly when used with a high volume of
clients.

“MS-Access databases are slow and inefficient and bog down when multiple
people try to use them.” [7]

As Access is a Microsoft product it cannot be used in conjunction with non-
Microsoft products such as JSP.

o MySQL

MySQL is an open source database management product with a simplistic setup.
It functions using a command line interface and is favoured by web programmers
for its flexibility in terms of the number of different languages used.

1 Object Orientated (“OO”) splits data into “Objects” which can then be manipulated
2 “Tag libraries define declarative, modular functionality that can be reused by any JSP page”. [8]
3 JavaBeans: A reusable Java component that can be accessed over a web server

14

“MySQL is the world's most popular open source database, designed to be fast,
reliable and easy to use.” [9]

Although MySQL is well known for being reliable, older versions do not focus
heavily on security.

o Oracle

Oracle is the most expensive and popular commercial database available.

“Oracle is widely regarded as one of the most popular full featured database
systems on the market.” [10]

It is a complete database management system that deals with high volumes of
data and combines high efficiency with high levels of security.

Oracle can be complicated to set up and manage and requires a skilled
administrator to operate large scale systems. As the product designed in this
project is a relatively small scale system, such issues are not cause for concern.
Other factors to consider when using this system are the time it takes to run and
resources required.

After much consideration, Oracle was used as the database of choice in this project
due to its proficiency and high level of security. As a system developed specifically for
industry, Oracle is both robust and reliable and its current use in the Computer Science
department at Bristol University will enable hassle free integration.

Although chosen for use in this project, it will be possible to convert from Oracle to an
alternative database format with ease.

2.3.2 Web Servers

A web server is the essential aspect required to build a web application. Various web
servers are available the best of which follow:

o Microsoft Internet Information Services
Microsoft Internet Information Service (IIS) is a Microsoft web server that can
be used for programming with ASP but does not support non-Microsoft
languages such as JSP and IIS better with a Microsoft Access database.

o Apache Tomcat
Tomcat is a Java based web server that provides extensive support for JSP
and servlets. It has extensive security features and in my personal experience
is a lot easier to customise than IIS.

The Tomcat web server was chosen for use in this system, as it provides the most
support for Java based web projects.

15

2.3.3 Internet Technologies

Several different “internet” technologies exist, but they all centre around a common
aim - to allow the user to view, display or interact with data over large area of
interconnected computers. The term “web” may also be used to refer to a collection of
interconnect documents [11].

2.3.3.1 Web Browsers

A web browser is a software application which aids users in displaying information from
a web page. A browser displays information received from a server in HyperText Mark-
up Language (HTML) format. HTML uses tags to structure and format a document. A
common problem with certain browsers is the inability to interpret incomplete HTML
structures which results in partial web pages being displayed. To combat this problem
Extensible HyperText Mark-up Language (XHTML) was created. XHTML has similar
syntax to HTML, but abides by stricter rules which create well formed documents.
Figure 2 illustrates how XHTML communicates between browser and server.

Figure 2: Communication between web browser and server.

2.3.2.1 Page Formatting

The best and most effective way of styling a web page is using a Cascading Style
Sheet (CSS) which allows specific formatting to be added to a web page.
Not only does the style sheet offer efficient and effective formatting, it also allows
separation of the actual page content from style frills and trimmings. In this manner
single sheet styling makes alteration of style effects for a whole site effortless.

Browser compatibility issues are easy to repair with the use of style sheets. Simple
syntax is used to reference elements in the HTML page as outlined below for a <p>
element:

 p
 {
 color: red;
 size: 10px;
 }

By adhering to CSS conventions, the online examination system will be designed to
have easily altered style and be cross browser compatible.

2.3.3 Conclusions of Final Software
After a thorough review of all available software the following specification was chosen
for use in this project

16

• Apache Tomcat Web Server
• Oracle Database
• Java 5
• JSP 2.0
• HTML and CSS

2.4 Exam Research - Question Formats

Although one of the aims of this project is to create a comfortable, user friendly
system, one must remain attentive to maintaining a high standard of question formats.

The information that follows is a brief overview of the seven question formats used in
the system designed. The bulk of this information was obtained from a teaching
academy at the University of Wisconsin [12], which is aimed at educating academics
on the most effective questions in order to obtain maximum student potential.

Bloom’s Taxonomy

Benjamin Bloom created a system of categorising levels of student comprehension,
aimed at finding the correct level of question complexity based on the students’ level
of knowledge.

“Bloom's taxonomy is a system created to improve testing precision by categorising
cognitive functioning into distinct levels.” [13]

Although his process was designed for the creation of correct question types based on
level of complexity, his theories produced a “set” of question formats which are best
used to produce maximum results.

According to Bloom’s theory, the question formats that follow promote the most
interaction at different levels of complexity. It should also be taken into account that
test questions must fulfil four basic requirements. They must:

1. Be Achievable
2. Monitor Progress
3. Be diagnostic
4. Be Prognostic

 [14]

Multiple Choice

Multiple choice questions allow formulation of questions of differing complexities, from
easy factual questions, to more in depth scenario questions. Multiple choice questions
can be tailored to be as challenging as the lecturer wishes through the incorporation of
believable “false” options.

True/False

True or false questions are one of the more simple and common formats where a
student has an even probability of getting a question correct. This question format is
limited in its ability to assess knowledge as the student may have used a measured
calculation to obtain an answer.

Short Answer

Short answer question formats can be used in a variety of scenarios, from single word
to multiple statement answers. Such questions require the student to enter information
without prior clues or assistance as to the director of the answer. One limitation of this

17

format is that it allows a limited level of complexity in that the question only requires a
short answer.

Automatic marking for such a question is not possible due to variation in grammar and
wording.

Long Answer/Essay

Long answer questions require students to submit a response without guidance and
are good for testing high levels of intelligence. Students are able to communicate their
opinions in more depth than a short answer question permits, however they cannot be
automatically marked.

Matching

Matching questions are designed for exams that test vocabulary and understanding of
definitions. Although not necessarily used often, and not for highly complex questions,
their inclusion will complete the application.

Ordering

Ordering questions require the student to select the correct sequence for a series of
answers and answers may be ordered in relation to importance or relevance. Questions
of this type offer variation with respect to complexity.

Multiple Answer

A multiple answer question can be a highly useful tool for exams, requiring the student
to select more than one answer to a question. It can be used for simple or complex
scenarios and can test understanding by allowing choice.

18

3 Specification

3.3 Requirements

3.3.2 Functional Requirements

IEP will be a complete examination system that is easily adaptable to different
educational environments. The system will be split into three sections that can be
accessed by the student, lecturer and administrator respectively.

3.3.2.1 Student Section

The student aspect of the system allows individuals to log in with unique passwords
and be transferred to a secure server. Here, information such as IP addresses and
personal credentials are validated, and the assessment procedure can begin. Any
examinations to be sat in the next ten minutes are presented on screen and after
further validation the student is able to proceed with the test. Upon completion of the
examination, answers are saved.

At each stage of the assessment, validation checks are performed preventing users
from making errors, loosing work or committing plagiarism.
The system will include an integrated calculator eliminating the necessity for external
calculator use.

3.3.2.2 Lecturer Section

The lecturer aspect of the system can only be accessed by certified staff. Examinations
can be created using standard online forms or via direct XML input. Lecturers are able
to view, edit, monitor and delete their exams as well as issuing on the day passwords.

Upon completion of the exam, marking may begin. Automatic marking based on model
answers inserted by the lecturer is completed before manual marking begins. All
results can be viewed in a variety of different formats.

The inbuilt task system enables lecturers to create reminders and tasks for completion
by a certain deadline.

3.3.2.3 Administration Section

The administration side of the system allows complete customisation of the
examination, from elements such as folder and image details, to database setup and
display information.
Specific information such as IP ranges and individual passwords are set and stored in
the administrator section of the system.

19

3.3.4 Efficiency

The IEP system will be designed with efficiency as a priority. High volumes of users will
be able to access the system without it crashing or hanging up, an area in which many
existing systems fail with.

One major problem with efficiency involves database connections, and hundreds of
connections at once can lead to long delays and errors. Every time a database query is
entered a new connection to the database is created and over time can prove to be
expensive and inefficient. The IEP system will be designed to keep database activity to
a minimum by building Java structures which hold the data. In addition, to minimise
the overhead caused by large numbers of queries, connection pooling will be
implemented. A connection pool is a method used to minimise the load and enhance
performance of a database. In web based applications, connections are constantly
created then left hanging. A connection pool consists of a set number of connections,
and each one is continually recycled.
A number of methods for creating connection pools exist. Hand coding in a
programming language such as Java can be used, however is not guaranteed to work
and may prove inefficient with excessive use.
By far the easiest and most efficient method of pooling makes uses of the Jakarta-
Commons database connection pool [15]. This is built in Java a reusable component
package that is configured within Tomcat.

3.3.5 Design Constraints
As with most web applications, browser independence is of great importance. The IEP
system will be built using browser independent HTML and JavaScript, adhering to the
strict standards set out World Wide Web Consortium (W3C) [16].

W3C is a governing body for standards on the web that creates open standards
allowing the internet to grow in a single direction. The standards are strict, and W3C
provides validation software to ensure that IEP will conform to these standards.

20

3.4 System Environment

The system itself interacts with other software as shown in Figure 3.

Figure 3: System Interaction.

The system works in three levels as shown in Figure 4, which outlines the layers of
security and how the system interacts with itself. Each layer (separated by dotted
lines) can only be accessed according to the correct user roles and privileges.

Figure 4: System Structure (dotted lines indicate the four layers of security)

21

3.5 Interface

A simple to use yet effective interface is crucial in the development of a successful
system. Many people find that a complicated looking interface would be enough to
confuse them before even interacting with the system. The IEP system will have a
straightforward interface suitable for any category of user. The lecturer interface on
the other hand contains several complex elements and a trade off between efficiency
and simplicity must be made.

3.6 Security

High levels of security will be required for this system to prevent students and others
accessing the system without authority.

As a website application, several aspects of security require consideration. HTTPS acts
as the first security layer and requires the user to validate themselves before access is
granted. A second validation is implemented when a resource is accessed, ensuring the
user possesses sufficient privileges for the action.

SQL Injection

An SQL injection attack is the most common attack on a web based database.
Whenever a query is made, all characters that could lead to a potential security breach
will be removed beforehand.

Bombardment

When an attacker bombards a database with more queries than it can handle, the
database may overload. The solution to this problem is to use connection pooling, as
previously described. Limiting the number of connections allowed reduces
bombardment considerably.

Security Procedures

Although several methods of security breach have been considered in the design of this
system it is not possible to identify every existing risk and hence three standard “best
practice” procedures will be incorporated to keep vulnerability low.

Shared Computers

Caching of pages on shared computers could allow unauthorised viewing of stored
files. Methods that do not save details on individual computers have been
employed to combat this problem.

User Validation

Implementation of strict validation routines that not only check the format of the
inputted data but also verify that the content is not malicious will prevent misuse
of the system. Queries that are submitted will be checked to see if characters
that can be used in a scripting attack are included. If this is the case, such
characters will be converted to a safe format.

Session Management

Session management is often overlooked in web applications and not setting
session timeouts can mean that redundant sessions are available for attack. A
session can be hijacked by stealing a users session token over a Local Area

22

Network (LAN). As the system is designed for use in Universities, this risk must
be evaluated.

Continual assessment of security risks must be carried out in order to keep abreast of
any new developments.

3.7 Data Transfer

Improvements in the efficiency and security of a system containing large amounts of
secure data can be achieved through the use of Java structures. Java structures and
JavaBeans will be used in the system to hold, transfer and access data.

Although data transfer in the structures is preferred, it is still necessary to have Java
inside the JSP page for functions such as getting parameters and if statements.
Although most data transfer will occur in the structures, small queries are still required
in the web page for validation purposes.

3.8 Project Schedule

Figure 5: Project Schedule

3.9 Class Design

3.9.4 Exam Package

The exam package will contain all material relevant to exams, from creating the exam
to handling exam information and validation. The exam package is split into two
sections; student and lecturer.

The student sections will handle the exam data, retrieving questions from the
database, handling data input from the exam and building question structure. When an

23

input is entered, the package will build a class to hold data until the exam is complete,
at which point it will be exported to the database.

Figure 6: Basic UML diagram for the exam package

The lecturer section is more complex and will contain the classes that allow the lecturer
to build the exam, retrieve results and alter data.

The structure of the package is important as the data needs to be secure, reliably
handled and transferred. To prevent illegal access of data all variables will be private,
and data will only be accessed using get and set4 methods on specific data which is
allowed to be viewed.

3.9.5 Marking Package
The marking package will contain all functions for marking and display results. The
package will handle the process of automatic marking, which requires a model answer
to be submitted by the lecturer. This model answer is then used to mark specific types
of questions. Marking classes will also handle the data during the manual marking
process. The answers are pulled from the database and displayed in the requested
format for the lecturer to mark. Results can be displayed graphically in terms of
percentages, through text, in the form of averages or may be outputted to an XML file
which can then be inserted into a database or other application.

Figure 7: Shows a basic UML class diagram for the marking package

4 Get and set methods allow classes to alter or retrieve data

24

3.9.6 Tasks Package
This package will handle the creation, viewing and displaying of tasks as well as date
calculations.

3.9.7 Security Package
The security package is split into three levels allowing different levels of access
according to user type. The security package will hold:

o functions which validate user information
o IP settings
o Course information
o Connection to the secure server
o Session and user validation
o Role checking
o Other security features that may be required.

3.9.8 Monitoring Package
The monitoring package will allow lecturers to monitor exams currently underway.
Listeners will be used to monitor activity on the server. When activity is detected, the
package will locate the lecturer associated with the exam, and allow access to the
session information (such as student information and exam status). A listener class is
built on the JavaBean topology, and interacts with ServletContext and HttpSession
objects. Use of a listener allows monitoring of lifecycle events.

3.9.9 Utilities Package
Other aspects of the exam, such as database and results handling, user tracking and
application settings will be encompassed within the utilities package.

25

4 Implementation

4.1 Database
The database is the backbone of the system, and it is essential that it is efficient and
cost effective. Poorly designed databases complicate the implementation process.

“A well-designed database is easier to implement than a poorly designed database.”
[17]

4.1.1 Structure

Currently, the University of Bristol have an existing database implemented for student
management which has been incorporated into the IEP system. Below is an overview
of existing table structures:

People
The People table contains personal data regarding University personnel with elements
such as name and email.
Sessions
University specific information such as degree course, examination number and tutor
are stored within this table.
Teachers
Lecturer details contain information about course units such as unit title and lecturer
identification number.
Courses
The courses table states details for each degree type; it holds the degree code, faculty,
department, number of years and degree classification.
Unit Sessions
This session contains a list of all students undertaking a particular unit.

Additional tables required for the successful implementation of the system are briefly
outlined below:

Exams
All data relating to exams including course and unit information, start date and time
are stored within the table.
Questions
Questions are held as individual entities within this table. The table contains
information on exam origin, question format and other question details.
Model Answers
Information pertaining to model answers is held within this table.
Results
Student answers to exams are collected here, and reference is made to the student,
exam, and question.
Marks
The individual mark obtain for each question is stored at this juncture.
Question Formats
Available question formats are stored in this table, along with a unique identifier, name
and html constructor example.
Settings
To allow complete customisation of the system, an additional settings table will be
required to store all application attributes used within the system.

26

4.1.2 Table Relationships

A primary key is a unique identifier for each record within a table. Some tables contain
foreign keys which provide references to primary keys within another table.
If constructed incorrectly, foreign keys can destroy referential integrity, and in order
for this to be upheld, references to primary keys from foreign keys must exist. Figure 8
graphically emphasises the relationships between table elements within this system.

Figure 8: Database Relationships

4.1.3 Connection Pooling

During the research phase, the most effective method of implementing connection
pooling was found to be through the use of Tomcat.
For successful connection pooling Java Naming and Directory Interface (JNDI) requires
configuration within Tomcat allowing Java components to locate each other at runtime
on the system.
In addition, to improve the throughput and efficiency provided by connection pooling,
Tomcats connector entity should contain an acceptCount attribute. This element is
established to inform the server of the connection limits required during heavy traffic
periods. A reference to the IEP database is also required to inform the service with
which database to implement connection pooling, as seen below.

4.1.4 Database Class
It is essential to structure and manage the database functions accurately. By designing
a class to manage the database it provides more security and separates the database
activity from the JSP code. Database essential methods include connect(),
disconnect(), create() and query().

The database is managed using the Java DriverManager initialised using the following
code which connects to the database using an available pooled connection:

 <resource-ref>
 <description>Connection Pooling</description>
 <res-ref-name>jdbc/IEP</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 </resource-ref>

Class.forName(dbDriver);
 Connection = DriverManager.getConnection(address, name, password);

27

The query() function performs an SQL query on the associated database. Handling
queries inside the database manager allows stricter monitoring and regulation to
prevent security threats.

4.1.5 Database Results

Once a query has been made, the database returns a ResultSet containing requested
data. Java’s ResultSet has existing pitfalls (3.8) the solution requires a custom result
class.

When a query is executed, the ResultSet is passed as a parameter. The ResultSet is
then used to build a custom result table. Once initialised, the table can be accessed
using getCell(row, col). Convenience functions not provided with the ResultSet
are available, including getting row and column counts.

4.2 Interface
The system requires two interfaces, student and lecturer. Although separate, the styles
for both interfaces are consistent.

4.2.1 Navigation
The system has a complicated hierarchy, as shown in figure 4. It is crucial that the
navigation design is fluid.

1. Lecturer Navigation

As a more complex navigational design, the lecturer section requires a hierarchal
structure. Certain elements are displayed based on user privileges. The navigation
must be fluent and well formed as shown in figure 9, which indicated the hierarchal
design and multiple levels.

while (rs.next()) // while there are results left in the set
{
 ArrayList<String> row = new ArrayList<String>(); // row list
 for (int i=0; i<columns.size(); i++) // loop through columns
 {
 String data = rs.getString(i+1); // get data
 row.add(data); // add data to row
 }
 table.add(row); // add the row to the table
}

28

Figure 9: Lecturer Navigation

2. Student Navigation

Simplicity is a key element in implementing the student navigation. To minimise
human error, access to links are restricted to the task currently in operation, as shown
in figure 10.

Figure 10: Student Navigation

4.2.2 Style
With the ability of formatting pages using CSS (2.3.2.1), the style can be consistent
throughout the system. The system is designed as an education package, whereby the
use of bright colours and flashy imagery are impractical and unnecessary. The system
will follow a simple fluent style with variants of grey, black and white.

4.2.3 Layout

Due to the nature of the system, the layout should complement the style. The layout
as shown in figure 11 follows a consistent style, with fluid lines and round corners.

Figure 11: System Layout

4.3 Calculator

An integrated calculator has been incorporated within the system, written as an applet
allowing interaction within a web page. To include the applet into a web page an
Object tag is required which specifies the location and source.
 <object codebase="iepCalculator" code="iepCalcApplet.class"></object>
The implementation of the calculator monitors for user input, when a button is
pressed, the action is processed. The result is calculated and outputted to the screen.

29

The calculator interface follows the site style and contains shortcut keys for usability as
shown in figure 12.

Figure 12: Calculator Applet

4.4 Security

Implementations of the outer layers of security are necessary before the system can
function correctly.

4.4.1 Security Realms

A security realm protects web application resources with defined security constraints,
allowing only specified users access to the resource. Tomcat has an integrated Realm
system that can be used to manage security.The Tomcat roles permitted for use with
this system are shown below:

Resources can then be protected allowing only specified roles to access them.
Protecting a resource should be configured manually, shown below:

4.4.2 HTTPS
HTTPS (2.2.5) provides the initial security layer. The protocol requires detailed
configuration using Tomcat. The following are steps required to configure HTTPS:

Server Certificate

Server certificates are used to authenticate clients; a certificate is required to operate
HTTPS and can be generated using Tomcats keytool facility. Once created, it must
then be imported to be associated with Tomcat.

 <role rolename="lecturer"/>
 <role rolename="admin"/>
 <role rolename="student"/>

<security-constraint>
 <web-resource-collection>
 <web-resource-name>IEP</web-resource-name>
 <url-pattern>/lecturer/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>lecturer</role-name>
 </auth-constraint>
</security-constraint>

30

Configuration

An SSL connector must be configured in Tomcat, detailing the port number that the
server will listen to for incoming connections. Once configured, all connections to the
system will be directed to the secure port.

4.4.3 Security Validation

On connection to the system, resources accessed require security processing. Once
accessed, Tomcat security checks that the user privileges provide have the correct
authorisation. Checks to verify user logon and connection over a secure server are
performed as shown below.

4.5 System Access

4.5.1 Index

(index.jsp)
If resources are accessed before user credentials have been validated, the system
automatically redirects to this page. Figure 13 shows the interface presented on
connection.

Figure 13: Login Page

4.5.2 Login

(login.jsp)
Once credentials have been entered, redirection to the secure server and login
procedures are initialised. Credential parameters are accepted with security risk
characters removed. The database is queried to validate the user parameters. Once
verified, user (4.5.3) and settings (4.5.3) JavaBeans are created. Finally, upon
successful login, the system retrieves the associated privileges and redirects the user
to the correct section of the system. Figure 14 shows the communication during the
access process.

Figure 14: System Access Interface

if ((request.getRemoteUser() == null) || (request.isSecure() == false))
 Throw new Error(“Validation Error”)

31

4.5.3 User JavaBean

(IEP/Users.java)
Once credentials are validated, database information constructs a user bean, which is
used throughout the site to retrieve user specific information, and provides a secure
way of tracking users.

4.5.4 Settings Bean
To ensure a dynamic and completely adaptable system, a settings bean is created to
hold folder, image and CSS locations, page names and database settings. When a
resource is accessed, the setting is retrieved using get methods shown below.

4.6 Student Section

4.6.1 Welcome

(student/main.jsp)
Once securely logged in, examinations that are preparing to commence are displayed.
This section performs the following:

a. Time and date checks for exam start times.
b. Student credential checks to ensure they are permitted to take an exam.
c. Disabling the exam if already taken.

Time Checks

(IEP/Util/ExamTimer.java)
This java class, accepts an exam time and date as parameters, and then retrieves the
current date and time using the java.util.Date functions. The times, such as time
left, time until the end of exam are then calculated and checks to see if the exam is
allowed to be accessed, as shown below.

Once validated, the available exams are displayed, as shown in figure 15. The page is
refreshed every 15 seconds to update the exam start times.

Figure 15: Main Page

 public String getCss(){ return cssFile; }
 public String getTitle(){ return pageTitle; }
 public String getImgPath(){ return imgPath; }

public boolean isAllowed()
{
// check time is within limit
if(start.getTime() <= now.getTime() && end.getTime() >= now.getTime())
{ return true; }// allowed
return false; // not allowed
}

32

4.6.2 Start Exam

(student/startExam.jsp)
When an exam is selected, student users are redirected to the exam processing page.
Further validation checks such as those to ensure that the student taking the exam is
on the course are performed before the student may proceed (see below).

Finally, the student is then requested to enter their on-the-day password. Invalid
passwords or credentials will redirect the student to the main page displaying the error
that occurred.

4.6.3 Exams
(student/exams.jsp)

4.6.3.1 Exam Back End

Question Class

(IEP/Questions.java)
The question class contains question information such as exam ID, title and type. It
provides get and set methods for accessing and altering the contained data.

ExamDetails Class
(IEP/Student/ExamDetails.java)
Once selected, the resulting exam is built into this class. It contains a list of question
structures (Question.java), plus all other associated information, such as title, date
and start time. The class is a container for holding all exam details.

Answers Class

(IEP/Student/Answers.java)
Once a student has answered a question, the result is built into the Answers class
which saves the question ID, answer and title.

Exam Class

(IEP/Student/Exam.java)
The exam class is built as a JavaBean container. It is referenced within the Exams.jsp
page using a JSP tag library:

 <jsp:useBean class="IEP.Student.Exam" id="exam" scope="session" />

The class stores the exam details (ExamDetails.java), and a list of student answers
along with other exam related information. The class is a manager for the exam, used
to combine questions, answers and data together. Attributes can be created and
modified through this container. When displaying information in the exam, details are
referenced from this class using get and set methods (see below). The exam class
contains all validation, checking and saving functions.

public String validateExam()
{
 ExamResults isOnCourse = db.query(…); // check user in on course
 ExamResults isOnUnit = db.query(…); // check user is on unit
 ExamTimer et = new ExamTimer(startHour, startMin, len);

 if(isOncourse==false || isOnUnit==false || et.isAllowed()==false)
 throw new Error(“Invalid Exam”);
}

33

Build Class

(IEP/Build.java)
To ensure a dynamic system, questions are required to be built at run time. The build
class accepts a question and an optional answer as parameters.
When initialised, the class determines the question format and automatically builds the
output (see below).

4.6.1.2 Layout
Figure 16 shows the layout of the exam interface. A photograph of the student is
displayed to allow moderators to ensure that the person sitting at the computer is the
one specified. The calculator (4.3) is located below the photograph, for easy access
and usability.

private String buildMultipleChoice()
{
 String answers = question.getAnswers();
 // loop through each attribute
 for(int i=0; i < answers.length; i++)
 {
 // build the input tag based on parameters
 build += buildInput("radio", "answer", answers[i]);
 build += "" + (i + 1) + ". ";
 build += answers[i]; // display attribute value

 }
 return build;
}

public String getTitle(){ return exam.getTitle(); }
public String getCourse(){ return exam.getCourse(); }
public String getUnit(){ return exam.getUnit(); }
public String getNoQuestions(){ return exam.getNoQuestions(); }
public String getId(){ return exam.getId(); }
…
public Questions getQuestion(int i){ return exam.getQuestion(i); }

34

Figure 16: Exams Page

Progress
A graphical progress bar detailing the exam completion rate is displayed below the
answer. As questions are answered, the exam class calculates the progress;

 public double getPercent()
 public String getPercentImg()

The result is calculated and a graphical image displayed.

Time Left
A count down for the time left in the exam has been included, using JavaScript
setTimeout("startTime()", 1000) which calls the function every one second to
update the time.

Navigation
To prevent human error, the interaction for the user is limited. During an exam, the
user may only move between questions and finish the exam. There are three elements
that allow the student to progress between the questions.

Figure 17 shows the first navigation method, allowing the user to navigate between
previous and next questions.

Figure 17: Top Navigation

Questions can be selected from a drop down menu, informing the user of the question
status, as shown in figure 18.

35

Figure 18: Drop-Down Navigation

The final method uses straightforward arrow buttons allowing navigation between
questions (figure 19).

Figure 19: Quick Navigation

Information Bar
To keep the student informed, a graphical representation of the current exam status
showing the question number, total questions and number of answered questions is
given and is shown in figure 20.

Figure 20: Information Bar

4.6.1.3 Setup
When initialised, the system creates a new instance of the Exam Bean (Exam.java). A
parameter questionNumber is passed between pages to inform the system the current
question the student attempting. The question is retrieved from the Exam bean and,
the results passed as parameters to the build class (Build.java), which generate and
displays the question and answer inputs.

4.6.1.4 Material

Questions which have additional material associated with them may be selected by the
user via “View Material” link, which then displays the material resource (figure 21).

Figure 21: View Material

36

4.6.1.5 Answering

On completion of a question, the system builds a new Answer class (Answer.java)
inserting the students answer. Once produced the Answer is added to the Exam bean.

If more than one answer to a question is detected, the answers are separated by a
semi-colon. To retrieve each answer, a String.split() function separates the answer
at the semi-colon.

4.6.1.6 Confirmation
Upon completion of the exam, the user is presented with a confirmation page where
they may view or alter all questions answered and unanswered (figure 22)

Figure 22: Exam Confirmation

4.6.1.7 Completion
At any point during the exam, if time runs out or completion has been selected,
redirection to the completion page occurs. All answers are committed to the database
and the class is removed, preventing the student from returning to the exam. Once
saved, exam statistics are displayed offering the option to return to the main page as
show in figure 23.

Figure 23: Completion Page

 String[] answers = answer.split(“;”);

 Answer answer = new Answer(exam, question, answer, id);
 exam.addAnswer(answer);

37

4.7 Lecturer Section

4.7.1 Exams

4.7.1.3 Exam Back End

Create Exam

(IEP/Lecturer/createExam.java)
This Java bean has been designed to handle all aspects and stages required to create
an examination. Once the bean has been initialised, the different stages required to
create an exam can be managed. On creation, the bean requires exam details such as
course, title, date and start time to be inputted. Through each stage of the process,
questions can be added, deleted or altered. Get and set methods for each element are
also provided (shown below). Once all data has been validated within the class, the
exam and all related material are committed to the database.

Upload

(IEP/Utils/Upload/)
For questions associated with additional material, the option to upload a file is given to
the lecturer. The Upload package handles all file uploading. When submitted the
“multi-part/form data” which contains the upload file is passed to FileUpload, and is
then parsed by a HttpMultiPartParser [18]. The data is split and a hash table
created containing the file data. The file details are removed from the hash table and,
the file is then constructed in a directory passed as a parameter.

XML Parsing

(IEP/XML/), (IEP/Lecturer/createXmlExam.java)
An XML file can be used to create an exam. The file is first uploaded using
UploadFile.java, and then passed to XMLParse.java. XMLParse.java uses a
DocumentBuilderFactory to validate and construct the Document Object Model (DOM)
tree and passes it to the createXmlExam.java, which extracts the exam information.
This information is then validated, constructed into a createExam class and saved to
the database. An example code snippet is shown below.

public string process()
{
 HttpMultiPartParser parser = new HttpMultiPartParser();
 Hashtable hashTable = parser.processData(request.getInputStream());
 FileInfo fileInfo = (FileInfo) hashTable.get("myFile");
 File fileName = fileInfo.file; // construct file
}

public void addQuestion(Questions q){ question.add(q); }
public Questions getQuestion(int no){ return question.get(no); }
public void save()
{
 if (isValid() == false) throw new Error(“Invalid Exam”);
 database.query(“insert into exams values” …);
 for(int i=0; i < questions.size(); i++)
 database.query(“insert into questions values” …);
}

38

Calendar

(lecturer/calendar.jsp)
To aid in date selection, a calendar has been provided. It retrieves the current date,
displaying all days within the current month. Access to days prior to the current date
are disabled. Figure 25 shows the interface for the calendar. Arrows are provided to
scroll through months and years. When selected, the month and year are passed as
parameters, where the dates are refreshed.

Generate Passwords

(lecturer/PasswordGen.java)
The password class generates on the day passwords, creating a string of 10 characters
for each student taking the exam. Once all passwords have been generated, the class
writes the passwords to the database with the associated exam.

Monitor Exams

(listeners/SessionCounter.java)
(Monitor/ExamMonitor.java)
As students are participating in an exam, the lecturer has the option to monitor
progress. During the student exam process, when an action is processed, the
ExamMonitor class is built with a snapshot of the students current statistics. These are
then added as a session variable using session.setAtttribute(“exam”,
ExamMonitor). The first step in implementing the monitor section was to create a
listener class. A session listener sits on the web server and listens for sessions. If a
session change is detected the listener is notified, allowing the session to be
processed.
The session listener needs to be configured in Tomcat using the following code:

 <listener>
 <listener-class>IEP.listeners.SessionCounter</listener-class>
 </listener>

 StringBuffer temp = new StringBuffer(length);
 for (int i = 0; i < length; i++)
 {
 char c = (char) (random.nextInt('Z' - 'A' + 1) + 'A');
 temp.append(c);
 }

(XMLParse.java)
public Document parse()
{
 DocumentBuilder builder = factory.newDocumentBuilder();
 if (validate) builder.setErrorHandler(new XMLReporter());
 Document document = builder.parse(new File(file)); …
}
(createXmlExam.java)
public void processExam(Document doc)
{
 Node examNode = xml.getNode("entity");
 for (int j=0; j<examNode.getLength(); j++)
 {
 extractDate(examNode.item(i);
 } …
}

39

The SessionCounter class, waits until a session alteration has been detected, and then
fires the sessionCreated(…) or the attributeAdded(…) function. When these
methods are called, the session is retrieved; if the attribute added is of an “exam” type
then the ExamMonitor class is taken from the session. The ExamMonitor class is then
added or altered into a Vector holding all exam sessions, as shown below.

Marking

(IEP/Marking/)
The four sections for marking are as follows; model answers (ModelAnswer.java),
automatic marking (AutoMarking.java), manual marking (ManualMarking.java) and the
mark results (Results.java).

Model Answers

The ModelAnswer structure holds the model answer to a single question. It contains
the exam name, question, format and the correct answer. Model.java is a JavaBean
container that holds all ModelAnswers for an exam. The Model class, takes an exam
ID, and retrieves all the related questions, checking each question to confirm it can
be automatically marked. If the question can be automatically marked a new
ModelAnswer structure is created holding the question, and waits for the lecturer to
insert the answer.

Automatic Marking

The AutoMarking class accepts an exam ID and, retrieves the model answers for
the exam and the students answers (IEP/Student/Answers.java). The class then
loops through each of the model answers comparing them against student answers.
Each answer is then assigned a mark, as shown below. The assigned mark is then
used to create a Results structure, holding the exam and student ID, question and
mark. Once all student answers have been marked, the Results are then saved to
the database.

 public int mark (String mAnswer String sAnswer, Scheme markScheme)
 {
 int mark = 0;
 String[] mAnswers = mAnswer.split(“;”); // split model answers up
 String[] sAnswers = sAnswer.split(“;”); // split student answers

 for(int i=0; I < mAnswers.length; i++) // loop through answers
 {
 …
 mark += compare(nAmswer[i], sAnswer, markScheme);
 …
 }
 return mark;
 }

 public int addValues(Object val, String aname)
 {
 for(int i=0; i < values.size(); i++) // loop through sessions
 {
 ExamMonitor thisObject = (ExamMonitor)values.get(i); // get existing
 ExamMonitor value = (ExamMonitor)val; // get new session object
 if(thisObject.getStudent().equals(value.getStudent())) remove(i);
 }
 values.add(i, val); // add to vector
 }

40

Manual Marking

The manual marking class loads all questions, student answers and results into its
structure. The lecturer can then sift through each question assigning it a mark.
Automatically marked questions will appear with each students mark, and will allow
the lecturer to change the mark if required. Once the marking process has been
completed, all Results are saved to the database.

4.7.1.4 Create Exam

There are two methods that can be employed to create an exam: using the system
forms or using an XML file.

Form Method

(lecturer/exams.jsp)

Stage One

The first stage requires essential examination data to be entered including elements
such as title, unit, date and start time. To prevent errors, the unit and course
attributes have been provided in a drop-down box with a list of values that the lecturer
is associated with. Figure 24 shows the stage one interface.

Figure 24: Stage One

The date requires a strict format (dd/Month/yyyy) and for this reason, a calendar page
that allows the user to scroll through months and days (figure 25) has been created.
Once a value has been selected it is automatically inserted into the “Exam Date”
attribute.

Figure 25: Calendar Facility

When the “Next Step” button is selected, the system validates that the required
element values have been inserted, and creates a new createExam() JavaBean
containing the exam data.

41

Stage Two

Stage two requires the questions related to the exam to be entered. Multiple choice,
answer and ordering questions require extra input. When the format is selected; the
extra attributes required are built at runtime for user input. Figure 26 shows the stage
two interface, with the multiple choice format selected.

Figure 26: Stage Two

In order to minimise database size, question length has been restricted to 200
characters. Below the question box (figure 26), “Characters Left” informs the lecturer
of the number of characters remaining for the question. Using simple JavaScript on key
press, the length of the question is retrieved , and a calculation of the number of
remaining characters is performed.

Material

To allow extra material to be used, the lecturer can either insert a URL to the
resource or upload an image or file. If upload is selected the lecturer enters the
file. When the form is submitted, the Upload class handles the file and uploads to
the Material directory.

Once all elements have been entered, the lecturer can select to add other questions or
to finish and save the exam. When either option is selected, the parameters build a
new Question class, inserting the class into the creatExam bean.

If “Add another Question” is selected, stage two is then repeated until all required
questions have been inserted. When “Finish and Save” is selected, all questions are
validated and the user is redirected to stage three.

Stage Three

Once the marking process is complete, the confirmation interface is displayed, showing
all exam information and available questions. Questions can be altered or deleted,
shown in figure 27.

Questions q = new Questions(id, title, … , answers, type);
examCreate.addQuestion(q);

42

By clicking on a question title, a brief description of the question is displayed (figure
28). By selecting edit or delete, the user is returned to stage two, with the required
question details selected.

Figure 27: Stage Three

Figure 28: Question Details

Once “Save Exam” has been selected, the createExam bean validates and inserts the
data into the database.

XML Creation
(lecturer/parseXml.jsp)
To create an exam from an XML file, the user first uploads the XML file to the system.
The upload is then converted into a DOM tree, broken up and created into a
createExam class, and saved to the database. The XML format of the file is strict and
must follow a Document Type Definition (DTD), which is a schema that the syntax of
the XML must follow. Below is an example part of the XML file used to create an exam.

43

4.7.1.5 View Exams

Exams Overview

The lecturer may view all exams they are associated with. Figure 29 shows the
overview screen which displays brief details about each exam. The exam title can be
selected to view full details about the exam.

Figure 29: Exam Overview

Single Exam View

All information available for a selected exam will be displayed, as shown in figure 30.
From the main view page all related features can be accessed, and features such as
edit exam, generate or print passwords and marking are allowed. By clicking the
question title, the user can view the question, as shown in Figure 28.

Figure 30: Single Exam View

<entity name="exam">
 <attribute name="Exam" value="10020021" />
 <attribute name="Title" value="Exam Title" />
 <attribute name="Date" value="07 May 2006" />
 <entity name="question">
 <attribute name="Title" value="Question 1" />
 <attribute name="Type" value="2" />
 <attribute name="Question" value="Select all that Apply" />
 <entity name="answers">
 <attribute name="answer_1" value="Option 1" />
 <attribute name="answer_2" value="Option 2" />
 </entity>
 </entity> …

44

4.7.1.6 Edit Exam

The user has the ability to edit all details related to an exam. They are able to edit,
delete or add questions, and change any detail such as course or title, as indicated in
figure 31.

Figure 31: Edit Exam

To prevent multiple calls to the database, the exam is built into a createExam class,
which allows the user to add or change details using the classes’ get and set methods.
When all changes have been made, calling the update() function writes the exams
changes to the database.

Edit Question

By clicking the “[Edit]” option (figure 31), the user can edit any question. The
question is retrieved from createExam using getQuestion(questionNo). When saved
the system calls editQuestion(), which updates the question in the createExam
class.

4.7.1.7 Generate and Print Passwords

Before the examination day, the lecturer is required to generate a number of on the
day passwords for each student. By selecting “[Create Passwords]” the PasswordGen
class creates a set number of passwords and stores them in the database. Once
passwords have been generated, the “[Print Passwords]” option is available. When
selected, the page prints all passwords related to the exam in blocks, using the
JavaScript window.print() function.

4.7.1.8 Monitor Exams

(lecturer/monitor.jsp)

Monitor Overview

The overview allows the lecturer to briefly view any students currently sitting an
associated exam. From the overview, the system calls the SessionCounter listener,
getting all sessions. The sessions are then separated, and if the session exam is
related to the lecturer, the data is extracted from the ExamMonitor class and displayed
(Figure 32).

45

Figure 32: Monitor Exams Overview

Monitor Single Exam

When a single session has been selected, the student details are retrieved from the
ExamMonitor class. Information such as the student ID is then used to query the
database to access and display student details. Other attributes from the ExamMonitor
class such as exam ID, current question number and the number of questions
answered are also displayed, as shown in figure 33.

Figure 33: Monitor Single Exam

4.7.1.9 Marking Front End
(lecturer/marking.jsp)
The marking process is split into three sections, creating a model answer, automatic
marking and manual marking.

Marking Overview

When the marking process is selected, the lecturer will see an overview of the marking
process. If no model answers exist, the lecturer has the option to create a model
answer other wise they may alter a model answer. If automatic marking has not yet
been performed, then the lecturer may proceed, with the manual marking. The
interface is shown in figure 34.

Figure 34: Marking Overview

46

Model Answers

For the automatic marking process to take place, model answers are required. The
Model container class builds model answers automatically. The marking page provides
the lecturer with each question where the correct answer is entered. Once the lecturer
has submitted all model answers for each of the questions, the Model class then saves
the data into the database.

Automatic Marking

Once the model answer has been generated, the automatic marking process can begin.
The automatic marking process requires no user interaction as the AutoMark class
handles all aspects mechanically. Once the marking has been completed, the user is
informed of the number of automatically marked questions (Figure 35).

Figure 35: Automatic Marking

Manual Marking

The manual marking process allows the lecturer to manually assign marks. The
ManualMarking class retrieves all questions, student answers and automatic marking
results building structures to hold the values. The lecturer then works through each
question assigning a mark. The automatically marked questions have each students
mark inserted, allowing the lecturer to alter them if necessary (Figure 36).

Figure 36: Manual Marking

Once all answers have been marked, a brief overview of the results are displayed such
as average mark and the number of correct and incorrect answers (figure 37)

Figure 37: Marking Overview

47

4.7.2 Tasks

The task system is a basic reminder process. Lecturers can create a task that has to be
completed by a certain date. They are able to create, edit and delete tasks. When the
lecturer first logs in, the system checks to see if any tasks have expired. Expired tasks
are set to inactive and will no longer be displayed. Figure 38 shows the main task
overview, showing all activate and inactive tasks. When a task is created, the lecturer
inputs the title, task content and a date to be completed.

Figure 38: Tasks Overview

4.7.3 Settings

The settings section can only be accessed by users with administration privileges. It
allows the system settings to be altered. The Settings bean retrieves settings using get
methods and the bean also provides set methods for changing values.

The settings process has four areas; database, display, folder and application settings.
Figure 39 shows the folder settings area. When an attribute is changed, the Settings
bean’s set method is called with the new attribute as a parameter. When a change
occurs the new value is inserted into the database.

Figure 39: Change Settings

48

4.7.4 IP Ranges

The IP ranges section, monitors connected IP address for illegal activity.

4.7.4.1 IP Ranges Back End

IP Class

(IEP/Utils/IP.java)
The IP class holds a structure for an IP; it contains an IP address and the associated
computers’ location. The class also provides get methods for accessing the data.

IP Monitor

(IEP/Utils/IPMonitor.java)
IPMonitor loads all allowed IP addresses into memory. When a new computer
connects to the system, the IP is passed to IPMonitor and compared with the values
in memory. If the address is found, then it is allowed, otherwise it is classed as an
illegal IP and the user cannot proceed any further.

4.7.4.2 IP Ranges Front End

Managing Ranges

(lecturer/ranges.jsp)
Only users with administration privileges can alter IP ranges. The manager allows you
to view, alter or delete IP ranges within the system. Figure 40 shows IP the overview
screen.

Figure 40: IP Range Overview

IP Check

(login.jsp)
When the user logs into the system, their IP is compared with that of the IP addresses
stored in IPMonitor. If the IP is not allowed they will be removed from the system.

public boolean check(String ip)
{
 for(int i=0; i < rangeCache.size(); i++)
 {
 IP checkIp = rangeCache.get(i);
 if(checkIp.getIP().equalsIgnoreCase(ip)) return true;
 }
 return false;

49

5 Results

Efficiency and reliability are paramount in this system. Throughout the project every
area of the system was thoroughly tested and debugged. With the final product,
extensive testing was required.

5.6 Security Testing
Many security vulnerabilities have been researched and a solution implemented in the
system. However, the only way of ensuring complete security, would be to test each
part thoroughly.

5.6.1 Accessing Resources
The system has been clearly spit into three sections, student, lecturer and
administration. Only members with the correct privileges can access the resources
within. To ensure the resources were protected the following test were carried out:

o When logging in as a student, the only resources available to you are
within the student folder. By attempting to access the lecturer and
administrator resources the server should deny permission. The result
proved that the student was unable to access resources outside of their
domain.

o Finally, by logging in as a lecturer and attempting to access the
administration resources. The result again, showed that the lecturers’
privileges did not give permission to the administration resources.

5.6.2 Secure Server

The only available resource outside of secure server allows the user to login therefore
all other resources can only be accessed from inside. To test that both the server and
security procedures in place are implemented correctly, resources were accessed from
outside the secure environment. The result was correct, in that the resource was
denied access and system was redirected to the login page.

5.6.3 SQL Attacks

To ensure the SQL injection attack prevention methods were working correctly, an SQL
parameter was altered to contain “1’; drop database iep;” this potentially would
delete the entire database. When the query was executed, the correct parameters
were removed, but an unplanned side effect occurred. As the string literal was
removed, the parameter then consisted of “1; drop database iep”. Although this
would do no harm to security, it would potentially add the parameter to the database
when simply “1” was required. The procedure was therefore altered to simply
terminate the query when a threat detected.

5.6.4 IP Checks
To ensure the IP monitor was implemented correctly, tests were performed from IP
addresses that were not permitted. The result was as expected with the system
detecting the error and redirecting to the login page.

5.7 Student Testing
The main testing required for the student section, involved testing the interface for
usability flaws and the Exam class for efficiency problems.

50

5.7.1 Interface Testing

The student interface was required to be efficient and durable, making the system easy
to use and prevent human error. When the first interface prototype was created, batch
testing was carried out by a number of students. Their feedback provided further
restrictions to the interface making the interaction relaxed and safer. Once the batch
testing had been carried out a well-organised, easy to use interface was implemented.
“Random” tests were then carried out on the system. By simply clicking all available
buttons, making every mistake possible, further flaws were found. One such defect
was that the Build class would not implement correctly if called twice by moving
between questions before the last instance had finished loading. The solution consisted
of disabling all buttons once an action had been selected until it was complete.

5.7.2 Exam Class Testing

The Exam class holds all exam questions and data. If the exam is large, the great
number of questions could prove an efficiency risk or the class simply could not handle
the work load and crash. To test the efficiency, a Java class was created, which
generated a new exam, then in a loop added 30 questions consecutively, followed by
the retrieval of each of the questions. A timer was used, to calculate the time taken to
process the data.

It was possible, that the data from a few tests might not be conclusive, but after
running the program repeatedly, incrementing the number of questions added and
retrieved. Evaluation of the outcome was irrefutable, showing that the class always
executed within an efficient time period proving that the class was always reliable,
shown in figure 41. The values used to create the result has a sample size of 20, the
number of questions is incremented by 30 after each set.

Figure 41: Testing Efficiency Results

Efficiency Tests on the Exam Class

0 50 100 150 200 250

1

2

3

4

5

Avg. Time (ms)
No. Questiions

As the graph shows that when the questions grow large, the average process time
does not increase exponentially, but stays within an acceptable range proving the class
was built in an efficient manner.

Time.start()
 for(int i=0; i < 30; i++)
 {
 Question q = new Question();
 Exam.addQuestion(q);
 }
System.out.print(Time.finish());

51

5.8 Other Tests
The system tests outlined above were only a handful of the tests carried out. Each
aspect of the system was thoroughly tested ensuring all data was correctly validated,
database entries and queries were successful and the system was as reliable as
possible. Each aspect of creating an exam using forms of XML was tested exhaustively
to ensure security vulnerabilities or validation problem did not occur.

52

6. Conclusion and future work

6.1 Achievements

The system produced, covered all aims and objectives set out for this project. The final
system is an efficient and secure Online Examination Program. All features discussed in
the design stages have been successfully implemented. After exhaustive testing the
forms and structures are extremely efficient and reliable. The security methods
implemented are fully operational, achieving their requirements, after testing all
security elements are implemented correctly providing a completely secure system.

6.2 Problems

Although the system provided met all the required objectives, this did not happen
without set-backs. Some of the main problems are outlined below:

o Java Null Pointer Exception. When working with web applications, if you get a
null pointer, it is extremely hard to track down the root, taking large amounts
of time to debug and remedy.

o Sessions Monitor. The session monitor was initially hard to implement,
problems occurred when a session was detected that was not of the
ExamMonitor type. This caused exceptions in the listener which intern cause
Tomcat to error. To overcome this problem, the system checks the session
object at runtime, if it is an ExamMonitor the session is then processed.

o File Upload. The file upload process was initially straight forward, by parsing the
file then retrieving the data. Problems occurred when attempting to rebuild the
file. Eventually I created a FileInfo structure that contained the file content
which will then be used to construct the file.

6.3 Future Developments

There are many possible future developments for this system. The secure shell aspect
researched initially could be implemented freezing all other applications except IEP. A
more advance automatic marking system could be produced, which handles part string
matching and key word finding. More question formats could be included, for example
mathematical calculations or more complex formats could be incorporated. The
displaying of results could be enhanced, providing more graphical interfaces or format
styles. A more complex future development work would be to possibly enhance the
monitoring process. Rather than getting a snapshot of the student exam, the actual
Exam class could be retrieved allowing the lecturer to physically view student answers
at real time, providing a more in-depth monitoring process.

6.4 Summary
The whole lifecycle of this project has proved a success, from the research and design
stage through to implementation and testing. I have stuck to my goals, aims and
schedule successfully. I have gained valuable experience with the whole development
process, and am very proud of the final system. The project has highlighted areas of
website development that cannot be seen when creating a small application. Due to
the system scale, tracking and security proved a lot harder than with a simpler system.
The resulting project provides both theoretical and practical experience which will
prove beneficial in the future.

53

References

1. Blackboard & WebCT. [No Date] Online CMS System. [Online] [Accessed 2006

April] Available from URL http://www.blackboard.com/
2. Northumbria University. [3rd January 2006] Blackboard Known Issues. [Online]

[Accessed 2006 April] Available from URL
http://northumbria.ac.uk/sd/elearning/issues/?view=Standard

3. Richard Healy.com [No Date] Richard Healy Test Builder. [Online] [Accessed 2005
September] Available from URL http://richardhealey.com/testbuilder/

4. ExamWeb Assessment Technologies [No Date] Online Assessment Software.
[Online] [Accessed 2006 May] Available from URL http://www.examweb.com/

5. SAOL.com. [No Date] A glossary of commonly used Internet terminology. [Online]
[Accessed 2006 March] Available from URL http://www.saol.com/glossary.asp

6. Wikipedia [8th April 2006] C Programming Language. [Online] [Accessed 2006
April] Available from URL http://en.wikipedia.org/wiki/C_programming

7. About.com [26/5/2004] ASP Programming. [Online] [Accessed 2006 February]
Available from URL http://experts.about.com/q/Active-Server-Pages-1452/asp-
virtual-path.htm

8. Java Sun [No Date] JSP Tag Libraries. [Online] [Accessed 2006 March] Available
from URL http://java.sun.com/products/jsp/taglibraries/

9. domaingurus.com [No Date] MySQL Database. [Online] [Accessed 2006 April]
Available from URL
http://www.domaingurus.com/faqmasterflex/faq.php?answer=57&cat_name=M
ySQL%20Database&category_id=8#57

10. About.com [No Date] Oracle Definition. [Online] [Accessed 2006 January] Available
from URL http://databases.about.com/cs/oracle/g/Oracle.htm

11. Wikipedia [April 2006] Internet. [Online] [Accessed 2006 April] Available from URL
http://en.wikipedia.org/wiki/Internet

12. University Wisconsin Teaching Academy [No Date] Exam Question Types & Student
Competencies [Online] [Accessed 2006 February] Available from URL
http://wiscweb3.wisc.edu/teaching-academy/Assistance/course/questions.htm

13. Wikipedia [No Date] Taxonomy of Education Objectives. [Online] [Accessed 2006
February] Available from URL
http://en.wikipedia.org/wiki/Bloom%27s_Taxonomy

14. Ted Power [No Date] Language Testing and Methods of Assessment. [Online]
[Accessed 2006 February] Available from URL
http://www.btinternet.com/~ted.power/esl0704.html

15. Apache Jakarta Project [No Date] Jakarta Commons Proper. [Online] [Accessed
2005 December] Available from URL http://jakarta.apache.org/commons/

16. World Wide Web Consortium [12th April 2006] W3C XHTML and CSS standards.
[Online] [Accessed 2006 January] Available from URL http://www.w3.org/

17. Web Developers Virtual Library [No Date] Web Databases. [Online] [Accessed 2005
December] Available at URL http://www.wdvl.com/Authoring/DB/

18. Wrox Press Inc [February 1st 2003] Professional JSP 2nd Edition [Book] Brown,
Burdick, Faulkner, et al. [ISBN: 1861004958]

